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Adaptive Filters

= overview of error analysis, numerics
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Exponential Convergence Rate, Analytic

I
Snf(2) = (@)| < Consty Ne™N & ||fllos < Const -
n

Behavior of f(-) off the real axis determines 7.

e Convergence rate as fast as Global smoothness permits.

e What about f € C° non-analytic? Gevrey regularity.
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What about Spectral Convergence for C°°7

Between exponential(Analytic) and spectral(C?®) is Gevrey Regularity,

p(:) is Gevrey regular of order 2, p(s) ~ (s1)2,

|Syp — p| < Consty, - Ne 2Vl

Fractional power exponential convergence.
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Gibbs' Phenomena and Filtered Reconstruction
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e High order reconstruction with Gibbs’ Phenomena removed.
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e Splines
e Wavelets ; Pyf—f~O (%) fixed r
e WENO

Semi-Global Smoothness, spectral accuracy

e Gegenbauer 1
e Filters/Mollifiers }PNf_f Cspsr 73

Filtering and Mollification are essentially interchangeable,

> o (@) fre™ e ¢xSyf(x)

<y ANV

Dual Space Physical Space

® When to filter in dual space or mollify in physical space?

» Computationally more efficient to stay is the space of given data.
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Canonical Polynomial Order Mollifiers

One-parameter compactly supported, (—m, ), functions.

T

Yo(x) = %1& (5) , —m0 < x<m7h

Convergence order as fixed number of exactly vanishing moments

d .
/dazng(:c)da:Z(Sj’o j=0,1,2,...,7— 1.

Local |f — f* ¢9| < 7Tr(f+1)! ||f(r)||LOO(LC—7T9,CB+7T9)
Error decreases at fixed polynomial order(67), 6 | O.

Recover from Sy f(-) requires similar order regularity, ¢ € C".

Inherent small scale introduced by projection(sampling), h ~ 1/N.



Adaptive Mollifier of Tadmor(Gottlieb) & Tanner

The two parameter mollifier is given by:
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Adaptive Mollifier of Tadmor(Gottlieb) & Tanner

The two parameter mollifier is given by:

=30 (3) 2 2

2
exp (%) x| <

® p(-), our G3 localizer p(z) =
O x| > .

. . H 1 2
® Dp(-), Dirichlet Kernel Dp(x) = S'Qr;(é’ij]‘(x//z)f

e Cancellation: ?7Dp’9 possesses p near vanishing moments.

w0 . .
/_WQ 2y, o(y)dy = 8;0+ C;-p~U™D | vj <p

e Unlike traditional mollifiers, dilation parameter as large as allowable
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Error Analysis of Adaptive Mollifiers

Pointvalue recovery from a spectral projection, Sy f(-),
or equidistant sampling Inf(-).

Error composed of two terms:

Error = ,9* Syf(z) — f(x)
= (fxtpo— )+ (Snf— 1) (o — Sntpe)

e Regularization := (f ¢, 9 — f)

= Controlled by number of near vanishing moments

e Truncation := (Snf — f) * (¥p o — SNVpe)
= Small due to mollifier regularity, essential dual space localization

Error Analysis:

e [T he optimal number of near vanishing moments, p.

e Justify selection of dilation parameter, 67 = d(x).



Revisited: Error=Regularization4Truncation

Error Analysis I, Regularization Error
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Revisited: Error=Regularization4Truncation

Error Analysis I, Regularization Error

e f(-) analytic in (x —d(x),z + d(x)) where d(z) distance to discontinuity,
and p € G2, therefore g;(y) = f(z 4+ y)pye)(y) — f(x) is Gevrey order 2.

|[Regularization| = |f*1,9— f]|

= |Spgz(y) — 92(y)ly=o0
< Cp-p-e 2VPTp

e Hidden dependence on dilation, 6, in n,.

e Dilation parameter, 0, as large as possible such that f(-) analytic in
(x —Om, x4+ 07) = On := d(x).

e Non-Linear Adaptive Mollification, 0(x) := d(x) /.

® Symmetric reconstructions must sacrifice accuracy as approaching edges.
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Revisited: Error=Regularization4Truncation

Error Analysis II, Truncation error

e Smoothness reflected as dual space localization, (y» — Syv), truncation.

e Dirichlet Kernel analytic and p € G2 = 1, g,) Gevrey order 2,

p,0(x

g2

S
o llos < Cp - s.<ezn9(x)> s s=12,...

| Truncation| = [[(SNf — f) * (¥p e — SNVp o)l Lo
1\s—1
< Const'(ﬁ) [po()llcs, Vs
s2 i
< Const- N eP1/s s,
e2n0(x) N

f(x) in denominator dictates = 6(x) as large as possible.

Remaining:

e Equilibration of Regularization and Truncation Error.

e [T he optimal number of near vanishing moments, p.



Error Analysis III, Determination of parameter, p

e [runcation minimized over s when:
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Incorporating this relationship for s,,;, vields
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Error Analysis III, Determination of parameter, p

e [runcation minimized over s when:

2 .
0 <m_nﬂ> =Pl /o Nde)
nINd(x) 85 i

Incorporating this relationship for s,,;, vields

2 2
Smin Smin™
i = -1 lo ~ Nd
Pmin . < g nNd(as)) (33)

e Adaptivity: The optimal choice for the number of near vanishing mo-
ments, p, is given as a function of the distance to the nearest discontinuity!

Pmin .= k - Nd(:l:)

k selected to balance Regularization and Truncation errors, £k = 0.5596.



Near discontinuities, Normalization

e O(1/N) neighborhood of discontinuity, p ~ Nd(x) ~ 1.

e Error for vanishing moments is substantial.
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e Visible error near discontinuities (blurring).



Near discontinuities, Normalization

e O(1/N) neighborhood of discontinuity, p ~ Nd(x) ~ 1.

e Error for vanishing moments is substantial.

d . | |
/_d vy, a(y)dy = Sp * (yjp(y))|a;=o ~ §;0 + Const, pG=D)

e Visible error near discontinuities (blurring).

e TO maintain at least first order accuracy, normalize to unit mass

¢n0'r'm P— ¢Nd(x)
N-d(z) % VN d(z) 0T

e Can possess any fixed number of exactly vanishing moments.

e Polynomial convergence near edges and exponential accuracy away.



There are no free parameters

e Exponential Accuracy away from discontinuity, d(x) > O(1/N).

Undy * SNF(@) — f(2)| < Cp - Nd(z)e 0-848Vn-Nd(@),

e EXplicit reconstruction depending only on the projection order, N, and
the discontinuity locations, d(x).

e Computationally robust due to rapidly decaying localizer, p(-).

e Optimal number of near vanishing moments given adaptively by

Pmin(N,z) := k- Nd(x)

e Polynomial order accuracy in O(1/N) neighborhood of discontinuities



Pseudospectral(Equidistant) Recovery

N-1
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Exponential accuracy the same order as spectral projection:
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e The pseudospectral coefficients are not needed; only samples f(y,).



Pseudospectral(Equidistant) Recovery

Tk .:/ f(x)e™dxe =  fr.:=— Z f(yn)e Yy = —v
—TT N = N
v=—N
Exponential accuracy the same order as spectral projection:
NS 2 —/n-Nd
N Y. Und) (@& —y) f(y) — f(z)| < Conste - (Nd(x))“e™ VT ()
v=—N

e The pseudospectral coefficients are not needed; only samples f(y,).

e Robust exponentially accurate method to recover intermediate function
values given an equidistant sampling of a piecewise smooth function.

e Accuracy proportional to number of cells to nearest discontinuity.

e Optimal order symmetric reconstruction, contrast with CWENO.

However, this is not Interpolation!



Reconstruction from Spectral Projection

[ e —1—€e™)/(e"—1) z€[0,7/2)
falz) = { —sin(2x/3 — 7/3) x € [7/2,27)

Reconstruction 1 x S1o5f(+) Regularization & Truncation errors
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e Balanced decay rate of Regularization and Truncation errors
e Different regularity constants, steep gradient at g_

e Accuracy sacrificed near discontinuities



Reconstruction from equidistant samples

Reconstruction, 9 g, * T128f(-)
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Log of error, N = 32,64,128

eEXxponential convergence away from discontinuity

ePolynomial order accuracy near discontinuity, d(z) = O(1/N)

eEXxact physical space localization, sharp resolution of discontinuities




2D Pseudospectral Example

cos(zy) +1 4z2 4 16y2 < 72
cos(zy) else

f(z,y) ={

0.5 1 15 2 2.5 3 0.5 1 15 2 2.5 3

e Also treating boundaries as discontinuities, = £m,y = %



Summary of Adaptive Mollifiers

e Recovers pointwise function values of piecewise smooth functions given
either its spectral projection, or equidistant sampling.

e NO parameters determined by the user, a “Black Box” method.
e Computationally robust and well suited for fast parallel computations.

e Exponentially accurate away from the discontinuity and fixed polynomial
order convergence rate in the O(1/N) neighborhood of edges.



Summary of Adaptive Mollifiers

e Recovers pointwise function values of piecewise smooth functions given
either its spectral projection, or equidistant sampling.

e NO parameters determined by the user, a “Black Box” method.
e Computationally robust and well suited for fast parallel computations.

e Exponentially accurate away from the discontinuity and fixed polynomial
order convergence rate in the O(1/N) neighborhood of edges.

e Reconstruction errors a combination of

— near vanishing moments, regularization
— physical space localization = Adaptive Filters
= dual space localization, truncation



Filters - Classical Polynomial Order

e Piecewise smooth functions, slowly decaying coefficients, f. < O(k~1)

e Filters increase convergence order by increasing coefficient decay rate
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Filters - Classical Polynomial Order

e Piecewise smooth functions, slowly decaying coefficients, f;. < O(k—1)

e Filters increase convergence order by increasing coefficient decay rate
| . - smoothness, o(n) € Cq[ 1,1] :
Filter properties =
Prop { - accuracy, () (0) = j<q-1

e Acts on function and its projection the same, dual space localization

Fa) = Snf @) = Y ('k')fke

wn ANV

e Error analysis through associated mollifier, acting in physical space

SN @) = fro@ = [ oW -y o@i= Y o)

" k|<N



Error Analysis - Sketch

e Accuracy condition implies a number of near vanishing moments

. d .
0(7)(0) =d;0 = /_dyjcb(y)dywéj,o j=0,1,2,...,q—1.
e However, increased filter order, g, decreases localization

e Error composed of competing localization and accuracy errors,

[f(x) — f*P(z)] <

/d(x)<|y|§7f |<d(z)

CI>(y)gac(y)dy| + ‘/Iy P (y)gz(y)dy

where, gz(y) := f(z) — f(z —y).



Error Analysis - Sketch

e Accuracy condition implies a number of near vanishing moments

. d .
0(7)(0) =d;0 = /_dyjcb(y)dywéj,o j=0,1,2,...,q—1.
e However, increased filter order, g, decreases localization

e Error composed of competing localization and accuracy errors,

[f(x) — f*P(z)] <

<|>(y)ga:(y)dy| + ‘/Iy P (y)gz(y)dy

/d(w)<|y|§7f |<d(z)

where, gz(y) := f(z) — f(z —y).

e Fixed order filters fail to balance accuracy and localization errors

e Optimal filter order is spatially adaptive, balancing competing errors

Gmin := (k- Nd@@)Y* o eG§l-1,1]



Reconstruction with Adaptive Filter

[ (e —1—€e™)/(e"—1) z€[0,7/2)
falw) = { —sin(2x/3 — 7/3) x € [/2,27)
Reconstruction, S128f7(+) | f(x) — Sy fo(x)|, N =232,64,128
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e Similar accuracy to Adaptive Mollifier

e Computationally fast when given spectral projection



Adaptive Mollifiers & Filters

A Powerful tool for manipulating a function’s

spectral projection or equidistant sampling.

Thank you

jtanner@math.ucdavis.edu



